A Phased Approach to Building Extremely Senstive Calorimeters for Photons and Rotons

Matt Pyle
(for Many People)
Sub-eV @ LBL
12/07/16

Science needs very sensitive large area cryogenic photon and roton detectors

1) Neutrinoless Double Beta Decay

- Most sensitive test of
 - lepton number conservation
 - Majorana/Dirac nature of v
- Central to most theories of Leptogenesis
- Potentially measures v mass

0νDBD: Cryogenic Calorimeters

- Advantages:
 - Excellent energy resolution
 - Variety of target isotopes

 Disadvantage: Backgrounds, in particular degraded alphas from Cu support structure

0νDBD: Cryogenic Calorimeters & Photon Detectors

Large area, High QE Photon Detector:

- TeO₂:100 eV Cherenkov light for $\beta\beta$ event:
 - 10 eV Sensitivity
- ZnMoO_{4:}3 keV Scintillation light for ββevents
 - 30 eV Sensitivity
 - Fast (1us) sensor response to minimize pileup

2) Superfluid He Dark Matter Detector

- Superfluid He: Many Long Lived Excitations
 - Photons & Triplet Excimers: ~ 18 eV
 - Phonons & Rotons: 1 meV
 - x10 gain due to adsorption on bare surface
- D. McKinsey et al (1302:0534)
- Simple elastic NR scattering just doesn't give you a measureable recoil
- Use off-shell processes that produce
 2 back to back offshell phonons
- Schutz and Zurek: 1604.08206

Superfluid He Detector Needs

- Photon/Triplet Eximer
 Detector Sensitivity: ~
 18 eV /7
- Roton Detector
 Sensitivity: ~30 meV /7

3) 1MeV-300 MeV DM Searches with Electronic Recoils

- What can we say about DM with M_{DM} < 200 MeV
- 10 MeV DM nuclear recoils:
 <Er> ~ 3meV
- Dorenzo, Essig et al (1108.5383)

$$\Delta E = \frac{\Delta P^2}{2M_n} \lesssim \frac{2M_{DM}^2 v^2}{M_N}$$

For < 300 MeV Dark Matter don't pay the kinematic penalty.

Search for elastic scatters between DM and e-

ER DM Searches with Scintillators

Photon Detector Sensitivity: 1.5 eV/ 7

- Use a low bandgap scintillating crystal (GaAs, NaI) and couple to a single photon sensitive large area detector with no dark count rate
 - PMT
- You pay a penalty compared to semiconductor detectors
- Different Systematics

. .

4) Exotic Coupling High Mass Dark Matter

- What if DM couples via spin? What if DM coupling has strong velocity dependence (WH 1405.6690)?
 - ~10 kg of Scintillation + Phonon Detectors for ER/NR rejection made from NaI and CaF₂ could compete with much larger experiments.

- 1410.1573
- 1603.02214
- Photon Detector:
 - ~2.5 eV/ 3 Sensitivity

Science Requirement Summary: Photon/Roton Detector Sensitivity

	Sensitivity ($oldsymbol{\sigma}$)	
0νDBD	10 eV	
He Scintillation	2 eV	
Exotic Coupling Dark Matter	0.75 eV (still good if higher)	
ER DM with GaAs	0.25 eV	
He Roton	5 meV	

Electrons

Dark Counts

e⁻ (S2) Background Rate in Zeplin III

 $R_{1e} = 5.7 \text{ Hz} -> \text{YIKES!}$

Science Requirement Summary: Photon/Roton Detector Dark Counts

	Sensitivity (σ)	Dark Count
0νDBD	10 eV	Some Allowed
He Scintillation	2 eV	None
Exotic Coupling Dark Matter	0.75 eV (still good if higher)	Some Allowed
ER DM with GaAs	0.25 eV	None
He Roton	5 meV	None

Low Temperature TES Calorimeter Technology

$$\delta T = \frac{\delta E}{C}$$
 \mathbf{G} \mathbf{G} Bath

- Transition Edge Sensor (TES):
 A superconducting metal film (W)
 that is externally biased so as to be within its superconducting/normal ~100 nV
- "Near Equilibrium Sensor": No Dark Count Rate

Calorimeter Sensitivity

$$\sigma_{< E>}^2 = \sum_i (E_i - < E>)^2 \frac{e^{-\beta E_i}}{\sum_j e^{-\beta E_j}}$$

$$= \frac{\sum_i E_i^2 e^{-\beta E_i}}{\sum_j e^{-\beta E_j}} - < E>^2$$

$$= -\frac{\partial < E>}{\partial \beta} = \frac{\partial < E>}{\partial T} k_b T^2 = C k_b T^2$$

$$C \qquad \qquad \text{`Intrinsic Thermal Noise of Calorimeters}$$

Bath

Calorimeter Optimization

$$\sigma_{\langle E \rangle}^2 = Ck_bT^2$$

- Minimize T
 - Dilution Refrigerators can cool detectors to 5mK
- Minimize C
 - Small Volume
 - Low TInsulators Freeze out

State of the Art: Thermal Cryogenic Photon Detectors

- CRESST Thermal Calorimeter Light Detector
 - -(0809.1829)
 - 30mm x 30mm Si wafer
 - Single W TES (Tc ~10mK)
 - Sensitivity: 8.5 eV (σ baseline)

Shouldn't this be a solved problem?

Culprit: Decoupling between the Sensor and Absorber at Low Temperature

Solution: Athermal Phonon Sensors

Collect and concentrate athermal phonon energy into TES via Al QP collection fins, completely bypassing the G_{ep} bottleneck

The Ultimate Cryogenic Photon and Roton Detector: thin / pixelized SuperCDMS Detector

STEAL FROM SUPERCDMS!

What happens when we shrink

Lowering T_c: Phonon Signal Bandwidth

Lowering T_c: TES Dynamics

$$\nu_{signal} << \nu_{sensor}$$

Lowering T_c: TES Noise

DC noise scales with G

Lowering T_c: Bandwidth Optimization Rule

You can always say on T_c^3 scaling (in principle) 45mK > 10mK: 2eV > 20meV

26

What happens when we pixelize?

- Naively, TES Noise sums in quadrature (Big Assumption!)
- 20 meV -> 1.5 meV

THE PROBLEMS

Problem #1: Vibrational Parasitic Power

Toggle CryoCooler ON/OFF

- Threshold: $12\sigma_{pt} \longrightarrow 7\sigma_{pt}$ (?)
- σ_{pt} : 340eVt \longrightarrow 125eVt
- Caveats:
 - Study done at 0V
 - Trigger vs Analysis Threshold

Vibrations from the cryocooler produce high frequency phonons within our detectors which look like real events.

Problem #2: RF Parasitic Power

EMI Interference @ UCB

Current Progress

First Prototype Design

Optimized
Phonon
Collection Fin
Design

Value	Description
$45.6~\mathrm{cm}^2$	Absorber Area
10.6 g	Absorber Mass
$60 \mathrm{mK}$	W TES Transition Temperature
$20 \mathrm{mK}$	Bath Temperature
1185	# of TES in parallel
$40\mathrm{nm}$	TES film thickness
$140~\mu\mathrm{m}$	TES length
$1.3~\mu\mathrm{m}$	TES width
$100~\mathrm{m}\Omega$	Operating Resistance
55 nW/K	Thermal Conductance
$6.5~\mathrm{pW}$	TES Bias Power
$7.3 \text{x} 10^{-18} \text{W} / \sqrt{hz}$	Thermal Fluctuation Noise
$420 \; \mathrm{fJ/K}$	TES heat capacity
$4.12~\mathrm{kHz}$	sensor bandwidth
$200~\mu\mathrm{m}$	Al collection fin length
$340~\mu\mathrm{m}$	quasi-particle diffusion length
$16.2 \text{ x} 10^4 \mu\text{m}^2$	collection fin area per TES
48%	Phonon collection efficiency
$8.49~\mathrm{kHz}$	Phonon collection bandwidth
2.2 eV	Estimated Phonon Resolution
	45.6 cm^2 10.6 g 60mK 20mK 1185 40nm $140 \mu \text{m}$ $1.3 \mu \text{m}$ $100 \text{ m}\Omega$ 55 nW/K 6.5 pW $7.3 \text{x} 10^{-18} \text{W} / \sqrt{hz}$ 420 fJ/K 4.12 kHz $200 \mu \text{m}$ $340 \mu \text{m}$ $16.2 \text{ x} 10^4 \mu \text{m}^2$ 48% 8.49 kHz

Experimental Progress: 1st Run

- No source this run
 - no phonon collection efficiency measurement
- Did clamp kludge design work?
 - No vibrational sensitivity whatsoever. Unless the athermal phonon collection efficiency is truly horrid ... solved
- Measured Phonon Sensor Parameters
 - $T_c = 45$ mK: lowest ever measured -> beware of parasitic power
 - R_n = 150mOhm: Expected 300mOhm (TES width was 4um ⊗)
 - $T_{bath} = 37mK$
 - $P_0 = 2pW$
 - $S_p(0) = 1.75 \times 10^{-17} \text{ W}/\sqrt{Hz}$: x3 higher than expected ⊗
 - $\beta \sim 0$: Evidence that β is getting smaller as we drop T_c ?
 - $\tau_{\rm eff}$ =119us: Suppressed by low R_o and T_{bath}
 - Estimated 25us falltime in perfect setup (too good to be true?)

Experimental Progress: Biggest 1st Run Mystery

- Phonon Pulse falltime:
 - Measured: 200us
 - Expected: 20us
- Huge Discrepancy!
- Hypotheses:
- 1. Just saturation effects (calibration source)
- 2. The Si surface was really rough due to overetching the aSi layer ... could phonons really be bouncing around for that long?

2nd Run Cooling Today

- No aSi layer
- Am Calibation source (2 Hz)

Summary

- A daunting, but theoretically possible path to meV scale devices
- At every stage in sensitivity development there are scientifically interesting uses

Backup

Resolution Limits: Parasitic Power

SAFARI has created devices with x75 smaller G & x9 smaller P_{bias} than we require

	SuperCDMS (modeled)	SAFARI (measured)
Тс	30 mK	111 mK
G	12800 fW/K	170 fW/K
P _{bias}	76 fW	8.9 fW
S _{NEP}	6x10 ⁻¹⁹ W/rthz	4.2x10 ⁻¹⁹ W/rthz

We're far from the fundamental limits on phonon resolution due to parasitic power